This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This represents isotopes of the first 105 elements, except for elements 87 (francium), 102 (nobelium) and 104 (rutherfordium). At least 3,300 nuclides have been experimentally characterized[1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour).

A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode.

Introduction

There are 251 known so-called stable nuclides. Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but no radioactive decay has yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 are determined to be very long-lived radioactive nuclides in the future. In this article, the "stable" nuclides are divided into three tables, one for nuclides that are theoretically stable (meaning no decay mode is possible) and nuclides that can theoretically undergo spontaneous fission but have not been evaluated to check for evidence of this happening, one for nuclides that can theoretically undergo forms of decay other than spontaneous fission but have not been evaluated, and finally a table of nuclides that can theoretically decay and have been evaluated but without detecting any decay. In this latter table, where a decay has been predicted theoretically but never observed experimentally (either directly or through finding an excess of the daughter), the theoretical decay mode is given in parentheses and have "> number" in the half-life column to show the lower limit for the half-life based on experimental observation. Such nuclides are considered to be "stable" until a decay has been observed in some fashion. For example, tellurium-123 was reported to be radioactive, but the same experimental group later retracted this report, and it presently remains observationally stable.

The next group is the primordial radioactive nuclides. These have been measured to be radioactive, or decay products have been identified (tellurium-128, barium-130). There are (currently) 35 of these (see these nuclides), of which 25 have half-lives longer than 1013 years. With most of these 25, decay is difficult to observe and for most purposes they can be regarded as effectively stable. Bismuth-209 is notable as it is the only naturally occurring isotope of an element which was long considered stable. A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235 have half-lives between 7.0×108 and 4.83×1011 years, which means they have experienced at least 0.5% depletion since the formation of the Solar System about 4.6×109 years ago, but still exist on Earth in significant quantities. They are the primary source of radiogenic heating and radioactive decay products. Together, there are a total of 286 primordial nuclides.[lower-alpha 1]

The list then covers the ~700 radionuclides with half-lives longer than 1 hour, split into two tables, half-lives greater than one day and less than one day.

Over 60 nuclides that have half-lives too short to be primordial can be detected in nature as a result of later production by natural processes, mostly in trace amounts. These include ~44 radionuclides occurring in the decay chains of primordial uranium and thorium (radiogenic nuclides), such as radon-222. Others are the products of interactions with energetic cosmic-rays (e.g. cosmic ray spallation) (cosmogenic nuclides), such as carbon-14. This gives a total of about 350 naturally occurring nuclides. Other nuclides may be occasionally produced naturally by rare cosmogenic interactions or as a result of other natural nuclear reactions (nucleogenic nuclides), but are difficult to detect.

Further shorter-lived nuclides have been detected in the spectra of stars (e.g. technetium, promethium, and some actinides). The remaining nuclides are known solely from artificial nuclear transmutation. Some, such as caesium-137, are found in the environment but as a result of contamination from releases of man-made nuclear fission product (from nuclear weapons, nuclear reactors, and other processes). Other are produced artificially for industrial or medical purposes.

List legend

Each group of radionuclides, starting with the longest-lived primordial radionuclides, is sorted by decreasing half-life, but the tables are sortable by other columns.

no (number) column
A running positive integer for reference. This number, i.e. position in this table, might be changed in the future, especially for nuclides with short half-lives.
nuclide column
Nuclide identifiers are given by their atomic mass number A and the symbol for the corresponding chemical element (corresponding to the unique proton number). In the cases that this is not the ground state, this is indicated by a m for metastable appended to the mass number. Sorting here sorts by mass number.
Z, N column
The number of protons (Z column) and number of neutrons (N column).
energy column
The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV, formally: mnmnuclide / A, where A = Z + N is the mass number. Note that this means that a higher "energy" value actually means that the nuclide has a lower energy. The mass of the nuclide (in daltons) is A (mnE / k) where E is the energy, mn is 1.008664916 Da and k = 931.49410242 the conversion factor between MeV and daltons.
half-life column
The main column shows times in seconds (31,556,926 seconds = 1 tropical year); a second column showing half-life in more usual units (year, day) is also provided.
Entries starting with a ">" indicates that no decay has ever been observed, with null experiments establishing lower limits for the half-life. Such elements are considered stable unless a decay can be observed (establishing an actual estimate for the half-life). Note half-lives may be imprecise estimates and can be subject to significant revision.
decay mode column
α α decay
β β decay
ββ double β decay
ε electron capture
β+ β+ decay
β+β+ double β+ decay
SF spontaneous fission
IT isomeric transition
Decay modes in parentheses are still not observed through experiment but are, by their energy, predicted to occur. Numbers in brackets indicate probability of that decay mode occurring in %, tr indicate <0.1%. Spontaneous fission is not shown as a theoretical decay mode for stable nuclides where other modes are possible (see these nuclides).
decay energy column
Multiple values for (maximal) decay energy are mapped to decay modes in their order. The decay energy listed is for the specific nuclide only, not for the whole decay chain. It includes the energy lost to neutrinos.
notes column
CG
Cosmogenic nuclide;
DP
Naturally occurring decay product (of thorium-232, uranium-238, and uranium-235);
ESS
Present in the early Solar System (first few million years), but extinct now as a primordial nuclide.
FP
Nuclear fission product (only those from uranium-235 or plutonium-239) (only those with a half-life over one day are shown);
IM
Industry or medically used radionuclide.[2]

Full list

Theoretically stable nuclides

These are the theoretically stable nuclides, ordered by "energy".

No.NuclideAZNEnergy
(MeV)
156Fe5626309.153567
262Ni6228349.147877
360Ni6028329.145862
458Fe5826329.142938
552Cr5224289.137037
657Fe5726319.127119
759Co5927329.126046
854Cr5424309.125633
961Ni6128339.124129
1055Mn5525309.120611
1164Ni6428369.119754
1266Zn6630369.115258
1353Cr5324299.114435
1463Cu6329349.112272
1565Cu6529369.106154
1668Zn6830389.100845
1750Ti5022289.099861
1851V5123289.094884
1967Zn6730379.084468
2048Ti4822269.081488
2172Ge7232409.079465
2270Ge7032389.079372
2369Ga6931389.076078
2488Sr8838509.070438
2574Ge7432429.063522
2649Ti4922279.062323
2776Se7634429.061485
2871Ga7131409.059218
2978Se7834449.058842
3090Zr9040509.057631
3189Y8939509.056743
3286Sr8638489.054160
3382Kr8236469.054126
3484Kr8436489.052649
3573Ge7332419.048006
3687Sr8738499.046964
3775As7533429.045093
3880Kr8036449.044984
3977Se7734439.040153
4085Rb8537489.037998
4191Zr9140519.037156
4283Kr8336479.034966
4379Br7935449.034220
4481Br8135469.033979
4592Zr9240529.032783
4646Ti4622249.030532
4747Ti4722259.027336
4844Ca4420249.013793
4994Mo9442529.011856
5093Nb9341529.009051
5196Mo9642548.996229
5295Mo9542538.994564
5342Ca4220228.989116
5438Ar3818208.984870
5545Sc4521248.983945
5697Mo9742558.973806
5798Ru9844548.971572
5843Ca4320238.964551
59100Ru10044568.963517
6099Ru9944558.956348
6134S3416188.951675
6240Ar4018228.947325
63102Ru10244588.944837
64101Ru10144578.942117
6541K4119228.938623
6639K3919208.938174
67104Pd10446588.930847
6837Cl3717208.929760
69103Rh10345588.925910
7036S3616208.923108
71106Pd10646608.919460
72105Pd10546598.913356
7335Cl3517188.900285
74108Pd10846628.900253
75107Ag10747608.897514
76110Cd11048628.892718
7730Si3014168.885761
78109Ag10947628.885300
7932S3216168.884318
8033S3316178.876964
8131P3115168.859744
8228Si2814148.838935
8329Si2914158.826327
84112Cd11248648.880077
85111Cd11148638.875445
86114Sn11450648.865722
87113In11349648.862212
88116Sn11650668.860362
89115Sn11550658.854249
90118Sn11850688.848073
91117Sn11750678.843977
92120Sn12050708.830537
93119Sn11950698.828201
94121Sb12151708.811783
95122Te12252708.811606
96124Te12452728.801364
97123Sb12351728.796727
98126Te12652748.786126
99125Te12552738.783505
100128Xe12854748.773359
101127I12753748.771981
102130Xe13054768.762725
103129Xe12954758.758904
104132Xe13254788.747695
105131Xe13154778.746253
106134Ba13456788.735133
107133Cs13355788.733515
108136Ba13656808.724908
109135Ba13556798.722072
110137Ba13756818.711628
111138Ba13856828.710904
11227Al2713148.708242
113140Ce14058828.700494
114139La13957828.698892
11526Mg2612148.694981
116141Pr14159828.681405
117142Nd14260828.676646
11824Mg2412128.651911
11925Mg2512138.599047
120156Gd15664928.536342
121157Gd15764938.522478
122158Gd15864948.518775
123159Tb15965948.508680
12423Na2311128.485675
125163Dy16366978.478607
126164Dy16466988.473604
12722Ne2210128.436087
12820Ne2010108.423422
12916O16888.367390
13021Ne2110118.344280
13119F199108.149612
13217O17898.118904
13318O188108.114744
13412C12668.071327
13515N15788.064594
13614N14777.866827
13713C13677.830943
1384He4227.465077
13911B11567.283337
14010B10556.866257
141 9Be9456.810483
142 7Li7345.941599
143 6Li6335.723527
144 3He3213.094327
145 2H2111.503327
146 1H1100.782327

Nuclides that are observationally stable, having theoretical decay modes other than spontaneous fission

Ordered by "energy".

No.NuclideAZNEnergyDecay modeDecay energy
(MeV)
147 80Se8034469.043326β)0.134
148 86Kr8636509.039532β)1.256
149 84Sr8438469.031375+β+)1.787
150102Pd10246568.933337+β+)1.172
151104Ru10444608.918337β)1.300
152 36Ar3618188.911105+β+)0.433
153122Sn12250728.808590β)0.366
154143Nd14360838.658792(α)0.521
155150Sm15062888.585043(α)1.449
156152Sm15262908.563227(α)0.220
157154Gd15464908.549985(α)0.081
158155Gd15564918.536341(α)0.081
159164Er16468968.473462+β+, α)0.024, 1.304
160165Ho16567988.464689(α)0.139
161166Er16668988.462482(α)0.831
162167Er16768998.450350(α)0.666
163168Er168681008.446308(α)0.553
164169Tm169691008.433931(α)1.200
165170Yb170701008.428792(α)1.738
166171Yb171701018.418182(α)1.559
167172Yb172701028.415864(α)1.310
168173Yb173701038.404023(α)0.946
169174Yb174701048.398624(α)0.740
170175Lu175711048.386589(α)1.620
171181Ta181731088.338961(α)1.526
172185Re185751108.308204(α)2.195
173191Ir191771148.263508(α)2.084
174194Pt194781168.250519(α)1.504
175193Ir193771168.250259(α)1.017
176195Pt195781178.239516(α)1.158
177196Pt196781188.237896(α)0.794
178197Au197791188.229404(α)0.954
179198Hg198801188.227663(α)1.383
180199Hg199801198.219805(α)0.824
181200Hg200801208.218848(α)0.718
182201Hg201801218.208956(α)0.334
183202Hg202801228.206703(α)0.136
184203Tl203811228.198230(α)0.911
185204Hg204801248.192358β)0.416
186205Tl205811248.187526(α)0.157

Observationally stable nuclides for which decay has been searched for but not found (only lower bounds known)

Ordered by lower bound on half-life.

No.NuclideAZNEnergyHalf-life
(seconds)
Half-life
(years)
Decay modeDecay energy
(MeV)
18740Ca4020208.942485> 3.1×1029> 9.9×1021[3]+β+)0.194
188184W184741108.319737> 2.8×1029> 8.9×1021[3](α)1.656
189182W182741088.336424> 2.4×1029> 7.7×1021[3](α)1.772
190208Pb208821268.175888> 8.2×1028> 2.6×1021[4](α)0.519
191206Pb206821248.186791> 7.9×1028> 2.5×1021[4](α)1.137
192126Xe12654728.779010> 6.0×1028> 1.9×1021[5]+β+)0.897
193207Pb207821258.179791> 6.0×1028> 1.9×1021[4](α)0.391
194120Te12052688.816369> 5.0×1028> 1.6×1021[3]+β+)1.700
195106Cd10648588.893327> 3.5×1028> 1.1×1021[3]+β+)2.770
196134Xe13454808.728973> 2.7×1028> 8.7×1020[6]β)0.825
19758Ni5828309.109736> 2.2×1028> 7.0×1020[3]+β+)1.926
198183W183741098.324699> 2.1×1028> 6.7×1020[3](α)1.680
19954Fe5426289.113040> 1.4×1028> 4.4×1020[7]+β+)0.680
200132Ba13256768.741288> 9.5×1027> 3.0×1020[3]+β+)0.846
201110Pd11046648.874500> 9.1×1027> 2.9×1020[3]β)2.000
20292Mo9242509.014860> 6.0×1027> 1.9×1020[3]+β+)1.649
203204Pb204821228.194414> 4.4×1027> 1.4×1020[4](α)1.972
204112Sn11250628.862944> 3.1×1027> 9.7×1019[8]+β+)1.922
20596Ru9644528.967911> 2.5×1027> 8.0×1019[3]+β+)2.719
206192Os192761168.258202> 1.7×1027> 5.3×1019[3]β, α)0.413, 0.362
207198Pt198781208.222378> 1.0×1027> 3.2×1019[9]β, α)1.047, 0.087
208160Gd16064968.496009> 9.8×1026> 3.1×1019[3]β)1.729
209144Sm14462828.640577> 4.4×1026> 1.4×1019[10]+β+)1.781
210190Os190761148.275045> 3.8×1026> 1.2×1019[11](α)1.378
21164Zn6430349.102634> 3.5×1026> 1.1×1019[12]+β+)1.096
21274Se7434409.047175> 2.2×1026> 7.0×1018[13]+β+)1.209
213186W186741128.299873> 1.3×1026> 4.1×1018[3](α)1.123
21470Zn7030409.065109> 1.2×1026> 3.8×1018[3]β)0.998
215188Os188761128.290138> 1.0×1026> 3.3×1018[11](α)2.143
216148Nd14860888.594388> 9.5×1025> 3.0×1018[3]β, α)1.929, 0.599
217142Ce14258848.666666> 9.1×1025> 2.9×1018[3]β, α)1.417, 1.298
218179Hf179721078.353293> 8.5×1025> 2.7×1018[14](α)1.806
219196Hg196801168.233710> 7.9×1025> 2.5×1018[3]+β+, α)0.820, 2.027
220154Sm15462928.541857> 7.3×1025> 2.3×1018[3]β)1.251
221146Nd14660868.625649> 5.0×1025> 1.6×1018[3]β, α)0.070, 1.182
22250Cr5024269.076517> 4.1×1025> 1.3×1018[3]+β+)1.167
223178Hf178721068.365958> 4.1×1025> 1.3×1018[14](α)2.083
224177Hf177721058.370139> 3.5×1025> 1.1×1018[14](α)2.245
225156Dy15666908.523443> 3.2×1025> 1.0×1018[3]+β+, α)2.011, 1.758
226153Eu15363908.550893> 1.8×1025> 5.5×1017[3](α)0.274
227180Hf180721088.347930> 1.5×1025> 4.6×1017[14](α)1.283
228108Cd10848608.897735> 1.3×1025> 4.1×1017[3]+β+)0.272
229170Er170681028.424945> 1.3×1025> 4.1×1017[3]β, α)0.654, 0.050
230138Ce13858808.705878> 1.3×1025> 4.0×1017[15]+β+)0.694
231176Hf176721048.381427> 8.5×1024> 2.7×1017[14](α)2.255
23246Ca4620269.009047> 5.7×1024> 1.8×1017[16]β)0.988
233176Yb176701068.375271> 5.0×1024> 1.6×1017[3]β, α)1.083, 0.570
23494Zr9440548.999698> 3.5×1024> 1.1×1017[3]β)1.144
235124Sn12450748.782914> 3.2×1024> 1.0×1017[3]β)2.287
236162Dy16266968.492234> 3.2×1024> 1.0×1017[17](α)0.085
237136Ce13658788.707122> 3.0×1024> 9.6×1016[15]+β+)2.419
238114Cd11448668.860985> 2.9×1024> 9.2×1016[3]β)0.540
239123Te12352718.796302> 2.9×1024> 9.2×1016[18](ε)0.052
240145Nd14560858.632963> 1.9×1024> 6.0×1016[3](α)1.578
241192Pt192781148.260353> 1.9×1024> 6.0×1016[3](α)2.418
242180mTa180731078.342767> 1.4×1024> 4.5×1016[3], ε, α)0.783, 0.929, 2.103
243161Dy16166958.494067> 1.1×1024> 3.5×1016[17](α)0.344
244160Dy16066948.506816> 2.7×1023> 8.5×1015[17](α)0.439
245189Os189761138.277599> 1.1×1023> 3.5×1015[11](α)1.976
246187Os187761118.291746> 1.0×1023> 3.2×1015[11](α)2.720
247149Sm14962878.589058> 6.3×1022> 2.0×1015[3](α)1.870
248158Dy15866928.516973> 3.2×1022> 1.0×1015[17]+β+, α)0.283, 0.875
249162Er16268948.480852> 4.4×1021> 1.4×1014[3]+β+, α)1.844, 1.646
250168Yb16870988.437845> 4.1×1021> 1.3×1014[3]+β+, α)1.422, 1.951
25198Mo9842568.970426> 3.2×1021> 1.0×1014[3]β)0.112

Primordial radioactive nuclides (half-life > 5 × 108 years)

Ordered by half-life.

No. Nuclide AZN Energy Half-life Decay mode Decay energy
(MeV)
(seconds)(years)
252128Te12852768.7432616.94×10312.2×1024ββ0.868
253124Xe12454708.7782645.68×10291.8×1022εε2.864
25478Kr7836429.0223492.90×10299.2×1021εε2.846
255136Xe13654828.7068057.5×10282.38×1021ββ2.462
25676Ge7632449.0346565.642×10281.8×1021ββ2.039
257130Ba13056748.7425743.79×10281.2×1021εε2.620
25882Se8234489.0175963.408×10271.1×1020ββ2.995
25948Ca4820288.9924521.766×10275.6×1019[3]ββ4.274
260116Cd11648688.8361469.783×10263.1×1019ββ2.809
261209Bi209831268.1586896.343×10262.01×1019α3.137
26296Zr9640568.9613596.3×10262.0×1019ββ3.348
263130Te13052788.7665782.777×10268.8×1018ββ2.530
264150Nd15060908.5625942.493×10267.9×1018ββ3.367
265100Mo10042588.9331672.461×10267.8×1018ββ3.035
266151Eu15163888.5657591.458×10264.62×1018α1.964
267180W180741068.3471275.680×10251.8×1018α2.509
26850V5023279.0557594.418×10241.4×1017β+, β2.205, 1.038
269174Hf174721028.3922872.2×10247.0×1016[19]α2.497
270113Cd11348658.8593722.430×10237.7×1015β0.321
271148Sm14862868.6074231.988×10236.3×1015α1.986
272144Nd14460848.6529477.227×10222.29×1015α1.905
273186Os186761108.3025086.312×10222.0×1015α2.823
274115In11549668.8499101.392×10224.4×1014β0.499
275152Gd15264888.5628683.408×10211.1×1014α2.203
276184Os184761088.3118503.53×10201.12×1013α2.963
277190Pt190781128.2677641.524×10194.83×1011α3.252
278147Sm14762858.6105933.345×10181.06×1011α2.310
279138La13857818.6983203.219×10181.02×1011ε, β1.737, 1.044
28087Rb8737509.0437181.568×10184.97×1010β0.283
281187Re187751128.2917321.300×10184.12×1010β0.0026
282176Lu176711058.3746651.187×10183.764×1010β1.193
283232Th232901427.9185334.434×10171.406×1010α, SF4.083
284238U238921467.8725511.410×10174.471×109α, SF, ββ4.270
28540K4019218.9097073.938×10161.25×109β, ε, β+1.311, 1.505, 1.505
286235U235921437.8971982.222×10167.04×108α, SF4.679

Radionuclides with half-lives of 10,000 years to 5 × 108 years

Ordered by half-life. Some of these are known to have been present in the early Solar System (marked "ESS", meaning the first few million years of the Solar System's history), because of an excess of their decay products.[20]

No.NuclideZNEnergyHalf-lifeDecay modeNotes
(seconds)(years)
287146Sm62848.6261363.250×10151.03×108αESS[20]
288244Pu941507.8262212.525×10158.0×107α, SFinterstellar,[21] ESS[20]
28992Nb41519.0109801.095×10153.47×107β+, βCG, ESS[20]
290236U921447.8914707.391×10142.34×107α, SFDP
291205Pb821238.1872795.459×10141.73×107β+ESS[20]
292129I53768.7573974.955×10141.57×107βCG, FP, ESS[20]
293247Cm961517.8060084.923×10141.56×107αESS[20]
294182Hf721108.3243992.809×10148.90×106βESS[20]
295107Pd46618.8971972.051×10146.50×106βFP, ESS[20]
29697Tc43548.9705031.329×10144.21×106β+
29798Tc43558.9532461.325×10144.20×106β
29853Mn25289.1031751.180×10143.74×106β+CG, ESS[20]
29960Fe26349.0948618.268×10132.62×106βCG,[22] interstellar,[23] ESS[20]
300210mBi831278.1404739.594×10132.58×106α
301237Np931447.8819896.766×10132.14×106α, SFDP
302150Gd64868.5764545.649×10131.79×106α
30393Zr40539.0080694.828×10131.53×106βFP
30410Be466.8106574.765×10131.51×106βCG, ESS[20]
305154Dy66888.5284574.415×10131.40×106[24]α
306135Cs55808.7200824.194×10131.33×106[3]βFP
30726Al13138.5409542.263×1013717000β+CG, ESS[20]
308242Pu941487.8452181.183×1013375000α, SF
309208Bi831258.1620491.161×1013368000β+
310248Cm961527.7995861.098×1013348000α, SF
31136Cl17198.8913809.499×1012301000β, β+CG, IM
31279Se34459.0323109.309×1012295000βFP
313234U921427.9083087.747×1012245500α, SFDP
314126Sn50768.7540267.258×1012223000βFP
31581Kr36459.0305137.227×1012229000β+CG
31699Tc43568.9533796.662×1012211100βFP, DP
317186mRe751118.2959586.312×1012200000IT
318233U921417.9128735.024×1012159200α, SFDP
319236Np931437.8875144.860×1012154000β+, β, α
32041Ca20218.9283473.219×1012102000β+CG, ESS[20]
32159Ni28319.1078632.398×101276000β+
322230Th901407.9371362.379×101275400α, SFDP
323137La57808.7071011.893×101260000β+
324202Pb821208.1997141.657×101252500β+, α
325231Pa911407.9266271.034×101232770α, SFDP
326239Pu941457.8680227.609×101124110α, SFIM, DP
32794Nb41538.9900996.406×101120300βCG

Radionuclides with half-lives of 10 years to 10,000 years

Ordered by half-life.

nonuclideZNenergyhalf-life (seconds)half-life (years)decay modenotes
328245Cm961497.8223292.682×10118500α, SF
329250Cm961547.7793712.619×10118300SF, α, β
330243Am951487.8360352.326×10117371α, SF
331229Th901397.9421272.316×10117339αDP
332240Pu941467.8624652.070×10116560α, SFDP
33314C687.8556201.799×1011[lower-alpha 2]5701[lower-alpha 2]βCG, IM
334246Cm961507.8167811.502×10114760α, SF
335163Ho67968.4785911.442×10114570β+
33693Mo42519.0046931.262×10114000β+
337226Ra881387.9665975.049×10101600αDP
338247Bk971507.8061824.355×10101380α
339166mHo67998.4512733.787×10101200β
340251Cf981537.7759692.834×1010898α, SF
34191Nb41509.0233272.146×1010680β+
342194Hg801148.2372711.401×1010444β+
343108mAg47618.8814391.382×1010437.9β+, IT
344241Am951467.8516761.364×1010432.2α, SFIM
345249Cf981517.7913051.108×1010351.1α, SF
346248Bk971517.796811> 9.47×109>300α
34739Ar18218.9236868.489×109269βCG
348192mIr771158.2518757.605×109241IT
349158Tb65938.5110555.680×109180β+, β
350242mAm951477.8419134.450×109141IT, α, SF
35132Si14188.8238564.166×109132βCG
352209Po841258.1496333.951×109125.2[25]α, β+
35363Ni28359.1112103.159×109101βIM
354151Sm62898.5652512.840×10990.0βFP
355238Pu941447.8773582.768×10987.7α, SFIM, DP
356148Gd64848.5867062.74×10986.9[26]α
357157Tb65928.5220962.241×10971.0β+
358232U921407.9221432.174×10968.9α, SF
35944Ti22228.9247021.893×10959.1β+
360193Pt781158.2499651.578×10950.0β+
361121mSn50718.8084991.385×10943.89IT, β
362150Eu63878.5699741.164×10936.89β+
36342Ar18248.8909231.038×10932.9β
364207Bi831248.1682091.038×10931.6β+
365178m2Hf721069.776×10831IT
366137Cs55828.7030479.477×10830.1βFP, IM
367243Cm961477.8360049.183×10829.1α, β+, SF
36890Sr38529.0262399.120×10828.9βFP, IM
369210Pb821288.1414627.006×10822.2β, αDP, IM
370227Ac891387.9574476.871×10821.77β, αDP
371244Cm961487.8317635.712×10818.1α, SF
372145Pm61848.6318385.586×10817.7β+, α
37393mNb41525.084×10816.1IT
374241Pu941477.8515904.510×10814.3β, α, SF
375113mCd48654.380×10813.9β, ITFP
376152Eu63898.5508974.262×10813.51β+, β
377250Cf981527.7866404.128×10813.08α, SF
3783H123.0879943.888×10812.32βCG, IM
37985Kr36499.0299193.384×10810.72βFP, IM
380133Ba56778.7296243.319×10810.52β+

Radionuclides with half-lives of 1 day to 10 years

Ordered by half-life.

nonuclideZNenergyhalf-life (seconds)half-lifedecay modenotes
381154Eu63918.5372002.711×1088.60 yβ, β+
382194Os761188.2385081.893×1086.0 yβ
383228Ra881407.9443901.815×1085.75 yβDP
384146Pm61858.6155741.745×1085.53 yβ+, β
38560Co27339.0988111.663×1085.27 yβIM
386155Eu63928.5347111.500×1084.75 yβFP
387204Tl811238.1906711.193×1083.78 yβ, β+IM
388174Lu711038.3907261.045×1083.31 yβ+
389101Rh45568.9367531.041×1083.3 yβ+
390102mRh45578.9206809.152×1072.9 yβ+, IT
391208Po841248.1553159.145×1072.898 yα, β+
392236Pu941427.8895369.019×1072.858 yα, SF
393125Sb51748.7773678.705×1072.759 yβFP
39455Fe26299.1164078.637×1072.737 yβ+
395252Cf981547.7696058.347×1072.645 yα, SFIM
396147Pm61868.6090688.279×1072.624 yβFP, DP
39722Na11118.3068918.213×1072.603 yβ+CG
398134Cs55798.7197686.517×1072.065 yβ, β+FP
399171Tm691028.4176206.059×1071.92 yβ
400228Th901387.9539066.033×1071.912 yαDP
401172Hf721008.3992525.901×1071.87 yβ+
402179Ta731068.3527035.743×1071.82 yβ+
403173Lu711028.4001474.323×1071.37 yβ+
404252Es991537.7646214.075×1071.291 yα, β+, β
405109Cd48618.8833273.986×1071.263 yβ+
406235Np931427.8966693.422×1071.084 yβ+, α
407106Ru44628.8856863.228×1071.023 yβFP
408144Pm61838.6367513.136×107363 dβ+
409145Sm62838.6275902.938×107340 dβ+
410248Cf981507.8001982.881×107333.4 dα, SF
411249Bk971527.7908052.851×107330 dβ, α, SF
41249V23269.0500402.843×107329.1 dβ+
41354Mn25299.1001312.697×107312.2 dβ+, βIM
414119m1Sn50692.534×107293.1 dIT
415144Ce58868.6299182.462×107285 dβFP
416254Es991557.7485242.382×107275.7 dα, β, SF, β+
41757Co27309.1124542.348×107271.8 dβ+IM
41868Ge32369.0563272.341×107271 dβ+IM
419143Pm61828.6515092.290×107265 dβ+
420110mAg47638.8653552.158×107249.8 dβ, IT
42165Zn30359.0853522.105×107243.6 dβ+IM
422153Gd64898.5477312.077×107240.4 dβ+IM
423102Rh45571.788×107207 dβ+, β
424195Au791168.2383531.608×107186.1 dβ+
425194mIr771178.2380251.477×107170.9 dβ
426184mRe751098.3106701.460×107169 dIT, β+
427242Cm961467.8448601.407×107162.8 dα, SF
42845Ca20258.9782611.405×107162.6 dβ
429177mLu711068.3618291.386×107160.4 dβ, IT
430121mTe52698.8007491.331×107154.1 dIT, β+
431159Dy66938.5063781.248×107144.4 dβ+
432174m1Lu711031.227×107142 dIT, EC
433210Po841268.1472951.196×107138.4 dαDP
434139Ce58818.6968811.189×107137.6 dβ+
435123Sn50738.7853111.116×107129.2 dβ
436170Tm691018.4230961.111×107128.6 dβ, β+
437151Gd64878.5626851.071×107124 dβ+, α
438181W741078.3379241.047×107121.2 dβ+
43975Se34419.0335811.035×107119.8 dβ+IM
440123mTe52711.03×107119.2 dIT
441113Sn50638.8530359.944×106115.1 dβ+
442182Ta731098.3264569.887×106114.4 dβ
443127mTe52758.7657599.418×106109 dIT
44488Y39499.0292729.212×106106.6 dβ+
445257Fm1001577.7266198.683×106100.5 dα, SF
446185Os761098.3027308.087×10693.6 dβ+
447168Tm69998.4363168.044×10693.1 dβ+, β
448149Eu63868.5843958.044×10693.1 dβ+
44997mTc43547.862×10691 dIT
45035S16198.8955107.561×10687.51 dβCG
45183Rb37469.0240387.448×10686.2 dβ+
45246Sc21258.9790917.239×10683.78 dβ
45388Zr40489.0215897.206×10683.4 dβ+
45473As33409.0433416.938×10680.3 dβ+
45556Co27299.0720316.673×10677.23 dβ+
456185W741118.3058666.489×10675.1 dβ
457192Ir771156.379×10673.827 dβIM
458160Tb65958.4953466.247×10672.3 dβ
45958Co27319.1031536.122×10670.86 dβ+
460183Re751088.3216616.048×10670 dβ+
461175Hf721038.3826656.048×10670 dβ+
462188W741148.2770036.029×10669.78 dβ
46385Sr38479.0254805.602×10664.84 dβ+
46495Zr40558.9729895.532×10664.03 dβFP
46595mTc43528.9763595.270×10661 dβ+, IT
46691mNb41505.258×10660.86 dIT,ε
467254Cf981567.7510875.227×10660.5 dSF, α
468124Sb51738.7779435.194×10660.12 dβ
469125I53728.7820195.132×10659.4 dβ+IM
47091Y39529.0201745.055×10658.51 dβFP
471125mTe52734.959×10657.4 dIT
472148Eu63858.5868824.709×10654.5 dβ+, α
4737Be435.8184704.598×10653.22 dβ+CG
474258Md1011577.7159484.450×10651.5 dα, SF
47589Sr38519.0399694.369×10650.57 dβFP, IM
476114mIn49658.8466084.278×10649.51 dIT, β+
477146Gd64828.5925124.171×10648.28 dβ+
478203Hg801238.1958064.026×10646.6 dβ
479237Pu941437.8810603.905×10645.2 dβ+, α
480115mCd48678.8357543.850×10644.56 dβ
48159Fe26339.0995163.844×10644.49 dβIM
482181Hf721098.3332723.662×10642.38 dβ
483148mPm61878.5898003.567×10641.28 dβ, IT
484105Ag47588.9005473.567×10641.28 dβ+
485255Es991567.7415673.439×10639.8 dβ, α, SF
486103Ru44598.9185003.392×10639.26 dβFP
487127Xe54738.7667683.145×10636.4 dβ+
488184Re751093.059×10635.4 dβ+
48995Nb41548.9848213.023×10634.99 dβFP
49037Ar18198.9077523.020×10634.95 dβ+CG
491129mTe52778.7449532.903×10633.6 dIT, β
49284Rb37479.0207322.860×10633.1 dβ+, β
493241Cm961457.8484922.834×10632.8 dβ+, α
494141Ce58838.6772862.809×10632.51 dβFP
495169Yb70998.4285462.767×10632.03 dβ+IM
496260Md1011597.6997892.748×10631.81 dSF, α, β+, β
49751Cr24279.0801272.393×10627.7 dβ+IM
498240Cm961447.8558052.333×10627 dα, β+, SF
499233Pa911427.9104262.331×10626.98 dβDP
50082Sr38448.9982542.208×10625.56 dβ+IM
50133P15188.8694342.189×10625.34 dβ
502179m2Hf721072.164×10625.05 dIT
503234Th901447.8977632.082×10624.1 dβDP
504147Eu63848.5988792.082×10624.1 dβ+, α
505178W741048.3545631.866×10621.6 dβ+
506230U921387.9338711.797×10620.8 dα, SF
507253Es991547.7590191.769×10620.5 dα, SF
508121Te52691.656×10619.2 dε
509227Th901377.9576441.614×10618.7 dαDP
51086Rb37499.0335021.611×10618.6 dβ, β+
511253Cf981557.7578851.539×10617.8 dβ, α
51274As33419.0288951.535×10617.8 dβ+, β
513230Pa911397.9314361.503×10617.4 dβ+, β, α
514103Pd46578.9206381.468×10617.0 dβ+IM
51599Rh45548.9357111.391×10616.1 dβ+
51648V23258.9978901.380×10615.97 dβ+
517191Os761158.2618701.331×10615.41 dβ
518205Bi831228.1740691.323×10615.31 dβ+
519156Eu63938.5206421.312×10615.19 dβ
520225Ra881377.9735761.287×10614.9 dβDP
52132P15178.8308651.232×10614.268 dβCG, IM
522117mSn50671.21×10614 dIT
523143Pr59848.6522581.172×10613.56 dβ
524189Ir771128.2747831.140×10613.19 dβ+
525136Cs55818.7061711.127×10613.04 dβ
526126I53738.7690261.117×10612.93 dβ+, β
527140Ba56848.6661201.102×10612.75 dβFP
528126Sb51758.7570421.067×10612.35 dβ
529202Tl811218.1999561.057×10612.23 dβ+
530131mXe54771.023×10611.84 dIT
531190Ir771138.2647551.018×10611.78 dβ+
532131Ba56758.7330379.936×10511.5 dβ+
533223Ra881357.9940429.876×10511.43 dαDP, IM
53471Ge32399.0559439.876×10511.43 dβ+
535147Nd60878.6029739.487×10510.98 dβ
536246Pu941527.8054949.366×10510.84 dβ
537193mIr771169.098×10510.53 dIT
538188Pt781108.2725148.813×10510.2 dβ+, α
53992mNb41518.770×10510.15 dβ+, α
540225Ac891367.9751598.571×1059.92 dαDP
541131Cs55768.7435418.371×1059.69 dβ+IM
542125Sn50758.7585158.329×1059.64 dβ
543169Er681018.4318528.115×1059.39 dβIM
544149Gd64858.5755768.018×1059.28 dβ+, α
545167Tm69988.4458667.992×1059.25 dβ+
546129mXe54757.672×1058.88 dIT
547206Po841228.1595907.603×1058.80 dβ+, α
54872Se34389.0143007.258×1058.40 dβ+
549106mAg47598.8906397.154×1058.28 dβ+
550171Lu711008.4095327.119×1058.24 dβ+
551131I53788.7388426.930×1058.02 dβFP, IM
552257Es991587.7234686.653×1057.7 dβ, SF
553111Ag47648.8661116.437×1057.45 dβ
554161Tb65968.4903835.967×1056.91 dβ
555237U921457.8798005.832×1056.75 dβDP
556172Lu711018.4012175.789×1056.70 dβ+IM
557177Lu711065.743×1056.65 dβ
558132Cs55778.7315995.599×1056.48 dβ+, β
559206Bi831238.1685515.394×1056.24 dβ+
560196Au791178.2302055.328×1055.17 dβ+, β
56156Ni28289.0338995.249×1056.08 dβ+
562118Te52668.8147265.184×1056 dβ+
563145Eu63828.6092455.124×1055.93 dβ+
564120mSb51698.8081944.977×1055.76 dβ+
56552Mn25279.0464314.831×1055.59 dβ+
566148Pm61874.638×1055.37 dβ
567156Tb65918.5206674.622×1055.35 dβ+
568155Tb65908.5310314.596×1055.32 dβ+
569133Xe54798.7303024.530×1055.24 dβIM
570183Ta731108.3188474.406×1055.10 dβ
571210Bi831274.330×1055.01 dβ, αDP
572245Bk971487.8190204.268×1054.94 dβ+, α
573119mTe52678.8017734.061×1054.7 dβ+, IT
574146Eu63838.5995603.983×1054.61 dβ+
57547Ca20278.9721813.919×1054.54 dβ
576234Np931417.9005713.802×1054.4 dβ+
577101mRh45563.74×1054.34 dε, IT
578193mPt781153.74×1054.33 dIT
57996Tc43538.9652553.698×1054.28 dβ+
580231U921397.9249773.629×1054.2 dβ+, α
581175Yb701058.3839023.616×1054.19 dβ
582124I53718.7758843.608×1054.18 dβ+IM
583195mPt781173.46×1054.01 dIT
584127Sb51768.7540053.326×1053.85 dβ
585222Rn861367.9975733.304×1053.82 dαDP
586186Re751113.21×1053.72 dβ−,eIM
587224Ra881367.9872773.138×1053.63 dαDP
588100Pd46548.9235873.136×1053.63 dβ+
58995mNb41543.11×1053.61 dIT, β−
590166Dy661008.4483762.938×1053.4 dβ
591140Nd60808.6731132.912×1053.37 dβ+
59247Sc21269.0145642.894×1053.35 dβ
59387Y39489.0255652.873×1053.33 dβ+
59489Zr40499.0249122.823×1053.27 dβ+
59567Ga31369.0695322.819×1053.26 dβ+IM
596132Te52808.7166462.768×1053.2 dβFP
597134Ce58768.7044322.730×1053.16 dβ+
598199Au791208.2175342.712×1053.14 dβ
599201Tl811208.2065612.625×1053.04 dβ+IM
600253Fm1001537.7576912.592×1053. dβ+, α
601191Pt781138.2582282.473×1052.86 dβ+
602111In49628.8676882.423×1052.8 dβ+IM
60397Ru44538.9590802.411×1052.79 dβ+
60499Mo42578.9396692.375×1052.75 dβFP, IM
605122Sb51718.7953462.353×1052.72 dβ, β+
60671As33389.0275812.350×1052.72 dβ+
607198Au791198.2207322.329×1052.7 dβIM
608197Hg801178.2263582.309×1052.67 dβ+
60990Y39519.0322942.306×1052.67 dβIM
610182Re751078.3210532.304×1052.67 dβ+
611172Tm691038.4049322.290×1052.65 dβ
61267Cu29389.0760862.226×1052.58 dβIM
61344mSc21238.9246272.110×1052.44 dIT, β+
614128Ba56728.7385232.100×1052.43 dβ+
61577Br35429.0224312.053×1052.38 dβ+
616166Yb70968.4423402.041×1052.36 dβ+
617177Ta731048.3635532.036×1052.36 dβ+
618239Np931467.8649992.036×1052.36 dβDP
619153Tb65888.5374712.022×1052.34 dβ+
62066Ni28389.0714231.966×1052.28 dβ
621247Pu941537.7919751.961×1052.27 dβ
622198m2Au791191.96×1052.27 dIT
623115Cd48671.92×1052.23 dβ−
624149Pm61888.5818711.911×1052.21 dβ
625133mXe54791.89×1052.20 dIT
626203Pb821218.1934311.869×1052.16 dβ+
627238Np931457.8719311.829×1052.12 dβ
628240Am951457.8566941.829×1052.12 dβ+, α
629172Er681048.3997521.775×1052.05 dβ
630170Lu71998.4084451.738×1052.01 dβ+
63172Zn30429.0175911.674×1051.94 dβ
632153Sm62918.5456141.666×1051.93 dβIM
633202Pt781248.1832091.584×1051.83 dβ
63448Sc21278.9983271.572×1051.82 dβ
635246Bk971497.8112871.555×1051.8 dβ+, α
636195mHg801158.2293991.498×1051.73 dIT, β+
637188Ir771118.2752001.494×1051.73 dβ+
638140La57838.6736201.450×1051.68 dβ
639254mEs991551.41×1051.64 dβ−, IT, α, EC, SF
64069Ge32379.0438001.406×1051.63 dβ+
641133mBa56771.4×1051.62 dIT,e
64277As33449.0312831.398×1051.62 dβ
643119Sb51688.8232351.375×1051.59 dβ+
644147Gd64838.5840011.370×1051.59 dβ+
645194Au791158.2376261.369×1051.58 dβ+
646229Pa911387.9407691.296×1051.5 dβ+, α
647246Cf981487.8107921.285×1051.49 dα, β+, SF
64857Ni28299.0552221.282×1051.48 dβ+
649105Rh45608.9079561.273×1051.47 dβFP
65082Br35479.0164071.270×1051.47 dβ
65179Kr36439.0136441.261×1051.46 dβ+
652137mCe58798.6963271.238×1051.43 dIT, β+
653169Lu71988.4149781.226×1051.42 dβ+
654143Ce58858.6420411.189×1051.38 dβ
655251Es991527.7744671.188×1051.38 dβ+, α
65683Sr38458.9965681.167×1051.35 dβ+
657129Cs55748.7496221.154×1051.34 dβ+
658268Db1051637.6351331.152×1051.33 dSF, EC, α[27]
659232Pa911417.9163791.132×1051.31 dβ, β+
660193Os761178.2443481.084×1051.25 dβ
661165Tm69968.4527581.082×1051.25 dβ+
662131mTe52798.7203921.080×1051.25 dβ, IT
663226Ac891377.9637611.057×1051.22 dβ, β+, α
664160Er68928.4841901.029×1051.19 dβ+
665151Pm61908.5573871.022×1051.18 dβ
666135mBa56791.01×1051.17 dIT
667121Sn50719.73×1041.13 dβ−
668166Ho67999.65×1041.12 dβ−IM
66976As33439.0225059.454×1041.09 dβ
670200Tl811198.2065679.396×1041.09 dβ+
67172As33399.0189669.360×1041.08 dβ+
672231Th901417.9249329.187×1041.06 dβ, αDP
673252Fm1001527.7664989.140×1041.06 dα, SF
674156mTb65918.78×1041.02 dIT
675189Re751148.2722698.748×1041.01 dβ

Radionuclides with half-lives of 1 hour to 1 day

Ordered by half-life.

nonuclideZNenergyhalf-life (seconds)half-life (hours)decay modenotes
676197mHg801178.568×10423.8IT
677187W741138.2847228.539×10423.7β
678248mBk971518.532×10423.7β, EC (30)
679173Hf721018.3916178.496×10423.6β+
68096Nb41558.9630368.406×10423.4β
681154m2Tb65898.5269128.172×10422.7β+, IT (1.8)
682236mNp931438.1×10422.5EC, β (50)
68343K19248.9223278.028×10422.3β
684182Os761068.3164327.956×10422.1β+
685228Pa911377.9444687.920×10422.0β+, α (2)
68648Cr24248.9633907.762×10421.6β+
687154Tb65897.74×10421.5β+, β (<0.1)
688200Pb821188.2025427.740×10421.5β+
689112Pd46668.8421857.571×10421.0β
69028Mg12168.6077067.529×10420.9βCG
691100Rh45558.9271677.488×10420.8β+
692133I53808.7170947.488×10420.8β
693122Xe54688.7709597.236×10420.1β+
694255Fm1001557.7427047.225×10420.1α, SF (tr)
69595Tc43527.2×10420.0β+
696181Re751068.3282947.164×10419.9β+
697197Pt781198.2257567.161×10419.9β
698135La57788.7131797.020×10419.5β+
699194Ir771176.941×10419.3β
700142Pr59838.6614176.883×10419.1β,EC (tr)
701200mAu791218.2028776.732×10418.7β, IT (18)
702159Gd64958.5025766.652×10418.5β
703135Ce58778.6981796.372×10417.7β+
704193Au791148.2443536.354×10417.7β+
705151Tb65868.5456926.339×10417.6β+, α (tr)
70655Co27289.0536476.311×10417.5β+
707152Tb65878.5365916.300×10417.5β+, α (tr)
708188Re751138.2788606.121×10417.0βIM
709125Xe54718.7688646.084×10416.9β+
71097Zr40578.9264516.028×10416.7β
711186Ir771098.2819355.990×10416.6β+
71286Zr40468.9759795.940×10416.5β+
71376Br35418.9961835.832×10416.2β+
714119Te52675.778×10416.1EC, e+ (2.1)
715242Am951475.767×10416.0β, EC (17)
716170Hf72988.4022105.764×10416.0β+
717157Eu63948.5137925.465×10415.2β
71824Na11138.4220825.382×10415.0βCG, IM
71976Kr36408.9794065.328×10414.8β+
72086Y39478.9932345.306×10414.7β+
721211Rn861258.1128255.256×10414.6β+, α (27)
72290Nb41498.9897275.256×10414.6β+
723185Ir771088.2893825.184×10414.4β+
724240U921487.8516825.076×10414.1βDP
72572Ga31419.0239585.074×10414.1β
72669mZn30399.0565364.954×10413.8IT, β (tr)
727109Pd46638.8750614.932×10413.7β
72887mY39484.813×10413.4IT, β+ (1.6)
729123I53708.7863114.760×10413.2β+IM
730191mOs761154.716×10413.1IT
731183Os761078.3099074.680×10413.0β+
732150mEu63874.608×10412.8β, β+(11)
73364Cu29359.0935814.572×10412.7β+, β (38)IM
734182mRe751074.572×10412.7β+
735200Pt781228.2043424.500×10412.5β
736130I53778.7400354.450×10412.4β
73742K19238.9051754.436×10412.3βIM
738171Hf72998.3954804.356×10412.1β+
739239Am951447.8646664.284×10411.9β+, α (0.01)
740193mHg801138.2314834.248×10411.8β+, IT (7.2)
741203Bi831208.1774364.234×10411.8β+
74277Ge32458.9961854.068×10411.3β
743204Bi831218.1726514.039×10411.2β+
744189Pt781118.2643593.913×10410.9β+
745212Pb821308.1069283.830×10410.6βDP, IM
746195Hg801153.791×10410.5β+
747175Ta731028.3708133.780×10410.5β+
748245Pu941517.8137523.780×10410.5β
749187Ir771108.2837133.780×10410.5β+
750165Er68978.4624063.730×10410.4β+
75193Y39548.9769513.665×10410.2β
752244Am951497.8259143.636×10410.1β
753266Lr1031633.600×10410.0SF
754154m1Tb65893.598×1049.99β+, IT(22)
755183mOs761073.564×1049.90β+, IT(15)
756155Dy66898.5175213.564×1049.90β+
75791Sr38538.9905033.467×1049.63β
758196m2Au791173.456×1049.60IT
75966Ga31359.0368433.416×1049.49β+
760156Sm62948.5160073.384×1049.40β
761127Te52753.366×1049.35β
762201Pb821198.1969893.359×1049.33β+
763152mEu63893.352×1049.31β, β+(28)
76462Zn30329.0579573.307×1049.19β+
765135Xe54818.7114533.290×1049.14β
76658mCo27313.276×1049.10IT
767128Sb51778.7323433.244×1049.01β
768137Ce58793.24×1049.00β+
769234Pu941407.8988923.168×1048.80β+, α (~6)
770184Ta731118.3041543.132×1048.70β
771250Es991517.7784073.096×1048.60β+, α (<3)
772101Pd46558.9171493.049×1048.47β+
77352Fe26269.0007892.979×1048.28β+
774173Tm691048.3965242.966×1048.24β
775180Ta731072.935×1048.15EC, β (14)
776157Dy66918.5135442.930×1048.14β+
777210At851258.1283372.916×1048.10β+, α (0.2)
778176Ta731038.3632022.912×1048.09β+
779166Tm69978.4441832.772×1047.70β+
780256mEs991577.7307422.736×1047.60β
781171Er681038.4089012.706×1047.52β
782199Tl811188.2123332.671×1047.42β+
783211At851268.1265272.597×1047.21β+, α (42)
78473Se34399.0058212.574×1047.15β+
78593mMo42512.466×1046.85IT, β+ (0.1)
786234Pa911437.8989302.412×1046.70βDP
787135I53828.6919942.365×1046.57β
788107Cd48598.8842712.340×1046.50β+
78982mRb37458.9996082.330×1046.47β+, IT (<0.3)
790153Dy66878.5232882.304×1046.40β+, α (tr)
791127Cs55728.7503832.250×1046.25β+
792228Ac891397.9445912.214×1046.15βDP
79399mTc43562.162×1046.01IT, β (tr)IM
794145Pr59868.6205142.154×1045.98β
795189mOs761132.092×1045.81IT
796207Po841238.1541582.088×1045.80β+, α (0.02)
79790Mo42488.9620722.002×1045.56β+
798257Md1011567.7250401.987×1045.52EC, α (15), SF (tr)
799111mPd46658.8445891.980×1045.50IT, β (27)
800139mNd60798.6595291.980×1045.50β+, IT (12)
801180mHf721081.969×1045.47IT, β (0.3)
802209At851248.1329541.948×1045.41β+, α (4.1)
803113Ag47668.8415311.933×1045.37β
804156m2Tb65911.908×1045.30IT (?), β+ (?)
805198Tl811178.2101661.908×1045.30β+
806251Fm1001517.7685901.908×1045.30β+, α (1.8)
807138Nd60788.6656611.814×1045.04β+
808160mHo67938.4858771.807×1045.02IT, β+ (27)
809118mSb51678.8149631.800×1045.00β+
810243Pu941497.8336481.784×1044.96β
811192Au791138.2420361.778×1044.94β+
812110In49618.8574641.764×1044.90β+
813133mCe58758.6907711.764×1044.90β+
81494Tc43518.9665831.758×1044.88β+
81585mY39468.9868801.750×1044.86β+, IT (tr)
81673Ga31429.0261121.750×1044.86β
817192Hg801128.2380511.746×1044.85β+
818132La57758.7057211.728×1044.80β+
81999mRh45541.692×1044.70β+, IT (<0.16)
820267Db1051627.6443611.656×1044.60SF
821179Lu711088.3454281.652×1044.59β
82281Rb37449.0028711.645×1044.57β+IM
823243Bk971467.8298011.620×1044.50β+, α (~0.15)
824115mIn49661.615×1044.49IT, β (5.0)
82585mKr36491.613×1044.48β, IT (21)
826105Ru44618.8896891.598×1044.44β
82780mBr35459.0188721.591×1044.42IT
828139Pr59808.6815651.588×1044.41β+
829129Sb51788.7273581.584×1044.40β
830244Bk971477.8224911.566×1044.35β+, α (tr)
831109In49608.8648051.512×1044.20β+
832184Hf721128.2968711.483×1044.12β
833149Tb65848.5511661.482×1044.12β+, α (17)
834110Sn50608.8517271.480×1044.11β+
83544Sc21231.429×1043.97β+
83671mZn30419.0173701.426×1043.96β, IT (tr)
837141La57848.6595401.411×1043.92β
838133La57768.7141091.408×1043.91β+
83943Sc21228.9129071.401×1043.89β+
840195mIr771188.2333261.368×1043.80β, IT (5)
841193Hg801131.368×1043.80β+
842176mLu711051.319×1043.66β, EC (0.1)
843262Lr1031597.6815561.296×1043.60SF, β+, α
844202mPb821201.274×1043.54IT, β+ (9.5)
84592Y39538.9932081.274×1043.54β
846204Po841208.1612001.271×1043.53β+, α (0.7)
847132Ce58748.6961311.264×1043.51β+
848150Tb65858.5453941.253×1043.48β+, α (tr)
849117mCd48698.8088401.210×1043.36β
85061Cu29329.0874521.200×1043.33β+
851209Pb821278.1556071.171×1043.25βDP
852254Fm1001547.7528081.166×1043.24α, SF (0.06)
853250Bk971537.7795231.156×1043.21β
854161Er68938.4763521.156×1043.21β+
855190mRe751158.2574331.152×1043.20β (54), IT
85690mY39511.148×1043.19IT, β (tr)
857191Au791128.2483431.145×1043.18β+
858173Ta731008.3742181.130×1043.14β+
859112Ag47658.8447561.127×1043.13β
860247Cf981497.8035661.120×1043.11β+, α (0.04)
861184Ir771078.2865991.112×1043.09β+
862190m3Ir771131.111×1043.09β+, IT (8.6)
86345Ti22238.9381211.109×1043.08β+
864167Ho671008.4443041.081×1043.00β
865264Lr1031611.081×1043.00SF[27]
866134Sm62721.048×1042.91IT
867239Cm961437.8571431.044×1042.90β+, α (tr)
868197Tl811168.2151901.022×1042.84β+
86988Kr36528.9769181.022×1042.84β
87038S16228.7781961.022×1042.84β
87187mSr38491.013×1042.82IT, EC (0.3)
872117Sb51668.8289771.008×1042.80β+
873224Ac891357.9809931.001×1042.78β+, α (9.4), β(<1.6)
87493Tc43508.9702749.900×1032.75β+
87585Y39469.648×1032.68β+
876150Pm61898.5620149.648×1032.68β
87792Sr38548.9720679.576×1032.66β
878256Fm1001567.7373989.456×1032.63SF, α (8.1)
87931Si14178.8116189.438×1032.62βCG
88056Mn25319.0875729.284×1032.58β
88165Ni28379.0732679.062×1032.52β
882195Ir771189×1032.50β
883176W741028.3590559.000×1032.50β+
884117Cd48698.964×1032.49β
885116Te52648.8064148.964×1032.49β+
886141Nd60818.6684768.964×1032.49β+
887161Ho67948.4887378.928×1032.48β+
888210Rn861248.1170328.640×1032.40α (96), β+
889198Pb821168.2028938.640×1032.40β+
890238Cm961427.8637648.640×1032.40β+, α
89183Br35489.0232438.640×1032.40β
892152Dy66868.5326708.568×1032.38β+, α (0.1)IM
893178mTa731058.3550758.496×1032.36β+
894187Pt781098.2676388.460×1032.35β+
895165Dy66998.4568918.402×1032.33β
896132I53798.7205708.262×1032.30β
897158Er68908.4846198.244×1032.29β+
89866Ge32349.0049648.136×1032.26β+
899129Ba56738.7307468.028×1032.23β+
900150Sm62887.992×1032.22β+, α (tr?)
901177W741038.3521187.920×1032.20β+
902106mRh45618.8847617.860×1032.18β
903129mBa56737.776×1032.16β+, IT (tr?)
904138mPr59798.6710887.632×1032.12β+
905121I53688.7844437.632×1032.12β+
906127Sn50778.7288007.560×1032.10β
907123Xe54698.7644097.488×1032.08β+
908186Pt781088.2748977.488×1032.08β+, α (tr)
909245Am951507.8186747.380×1032.05β
91089Nb41488.9775077.308×1032.03β+
911195mOs761197.2×1032.00β, IT (?)
912117mIn49688.8288496.972×1031.94β, IT (47)
913186mIr771096.912×1031.92β+, IT (~25)
914177Yb701078.3594016.880×1031.91β
915198mTl811176.732×1031.87β+, IT (44)
916196Tl811158.2116186.624×1031.84β+
91783m2Kr36476.588×1031.83IT
91818F998.0227896.585×1031.83β+CG,IM
91941Ar18238.8778526.577×1031.83βCG
920163Tm69948.4562056.516×1031.81β+
921239Pa911487.8481486.480×1031.80β
922201Bi831188.1778756.480×1031.80β+, α
923207At851228.1353036.480×1031.80β+, α (~10)
924224Rn861387.9713276.420×1031.78β
92580Sr38428.9501776.378×1031.77β+
926181Os761058.3119356.300×1031.75β+
927205Po841218.1567376.264×1031.74β+, α (0.04)
928149Nd60898.5705296.221×1031.73β
929202Bi831198.1739666.192×1031.72β+, α (tr)
930249Es991507.7854646.132×1031.70β+~, α (0.6)
931147Tb65828.5526346.120×1031.70β+
93287Zr40478.9833736.048×1031.68β+
933126Ba56708.7274396.000×1031.67β+
934113mIn49645.968×1031.66IT
93561Co27349.1024495.940×1031.65β
93695Ru44518.9497495.915×1031.64β+
937238Am951437.8678825.880×1031.63β+(tr)
938208At851238.1313765.868×1031.63β+, α (0.6)
939133Ce58755.82×1031.62β+
94075Br35408.9931815.802×1031.61β+
941152m5Eu63895.76×1031.60IT
942259Md1011587.7098605.760×1031.60SF, α (<1.3)
943197mPt781195.725×1031.59IT, β (3.3)
944230Ra881427.9212495.580×1031.55β
945142La57858.6349545.466×1031.52β
94678As33459.0048795.442×1031.51β
947199Pb821178.1981115.400×1031.50β+
94878Ge32468.9926355.280×1031.47β
949255Cf981577.7387395.100×1031.42β
950196mTl811155.076×1031.41β+, IT (3.8)
951196mIr771198.2194405.040×1031.40β, IT (<0.3)
952132mI53794.993×1031.39IT, β (14)
953139Ba56838.6822174.984×1031.38β
95475Ge32439.0294134.967×1031.38β
955120I53678.7695774.896×1031.36β+
956266Db1051614.8×1031.33α ?, SF ?, β+ ?
957256Md1011557.7290624.620×1031.28β+, α (9.2), SF (<3)
958137Pr59788.6784594.608×1031.28β+
95987Kr36518.9990224.578×1031.27β
960164Yb70948.4434194.548×1031.26β+
961163Er68958.4711684.500×1031.25β+
96277Kr36418.9826184.464×1031.24β+
963178Yb701088.3505304.440×1031.23β
964237Am951427.8748304.380×1031.22β+(0.03)
965142Sm62808.6276164.349×1031.21β+
96697Nb41568.9538644.326×1031.20β
967185Pt781078.2695984.254×1031.18β+
968195Tl811148.2157124.176×1031.16β+
969129Te52774.176×1031.16β
970104Ag47578.8897024.152×1031.15β+
971110mIn49614.146×1031.15β+
972174Ta731018.3686844.104×1031.14β+
97368Ga31379.0578884.063×1031.13β+IM
97485mSr38474.058×1031.13IT, β+ (13)
975190mIr771134.032×1031.12IT
976162mHo67958.4783714.020×1031.12IT, β+ (38)
977204m2Pb821224.016×1031.12IT
97889mNb41483.96×1031.10β+
979103Ag47568.8945413.942×1031.10β+
980249Cm961537.7871913.849×1031.07β
981183Hf721118.3078853.841×1031.07β
982229Ac891407.9370483.762×1031.05β
983117Te52658.7986523.720×1031.03β+
984240Np931477.8533483.714×1031.03βDP
985182mHf721103.69×1031.03β, IT (46)
986212Bi831298.1096173.633×1031.01β(36)DP
987116mSb51658.8164833.618×1031.01β+
988148Tb65838.5479493.600×1031.00β+
989270Db1051653.600×1031.00α, SF, ε?

Radionuclides with half-lives of 1 minute to 1 hour

Radionuclides with half-lives of 1 second to 1 minute

Radionuclides with half-lives less than 1 second

See also

Sources

Almost all data are taken from reference.[28] For more recent updates, see reference.[29] These sources do not indicate whether certain heavy isotopes starting from Lr, Rf, Db, ... (etc.) were produced, observed, or only predicted from estimated data.

Notes

  1. Two further nuclides, plutonium-244 and samarium-146, have half-lives just long enough (8.0×107 and 1.03×108 years) that they could have survived from the formation of the Solar System and be present on Earth in trace quantities (having survived 57 and 45 half-lives). They have previously been considered primordial, but recent studies failed to find any evidence of them on Earth.
  2. 1 2 Other sources give the half-life of 14C as 5730 years (=1.808×1011 seconds)

References

  1. Thoennessen, M. (2 April 2019). "Discovery of Nuclides Project". Retrieved 26 April 2019.
  2. primarily sourced from https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx and https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-industry.aspx accessed 30 June 2016
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  4. 1 2 3 4 Beeman, J. W.; Bellini, F.; Cardani, L.; Casali, N.; Di Domizio, S.; Fiorini, E.; Gironi, L.; Nagorny, S. S.; Nisi, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M. (2013). "New experimental limits on the α decays of lead isotopes". The European Physical Journal A. 49 (4). arXiv:1212.2422. doi:10.1140/epja/i2013-13050-7. ISSN 1434-6001.
  5. Akerib, D S; et al. (2020-10-01). "Search for two neutrino double electron capture of 124Xe and 126Xe in the full exposure of the LUX detector". Journal of Physics G: Nuclear and Particle Physics. 47 (10): 105105. arXiv:1912.02742. doi:10.1088/1361-6471/ab9c2d. ISSN 0954-3899.
  6. Albert, J. B.; Anton, G.; Badhrees, I.; Barbeau, P. S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Daughhetee, J.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Fairbank, W.; Farine, J.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Hoessl, J.; Hufschmidt, P.; Hughes, M.; Jamil, A.; Jewell, M. J.; Johnson, A.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, S.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Marino, M. G.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Retière, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Vogel, P.; Vuilleumier, J.-L.; Wagenpfeil, M.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.; Zettlemoyer, J.; Ziegler, T.; EXO-200 Collaboration (2017-11-03). "Searches for double beta decay of 134Xe with EXO-200". Physical Review D. 96 (9). arXiv:1704.05042. doi:10.1103/PhysRevD.96.092001. ISSN 2470-0010.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  7. Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998-10-01). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. doi:10.1103/PhysRevC.58.2566. ISSN 0556-2813.
  8. Barabash, A. S.; Hubert, Ph.; Marquet, Ch.; Nachab, A.; Konovalov, S. I.; Perrot, F.; Piquemal, F.; Umatov, V. (2011-04-21). "Improved limits on β+ EC and ECEC processes in 112Sn". Physical Review C. 83 (4). doi:10.1103/PhysRevC.83.045503. ISSN 0556-2813.
  9. Danevich, F. A.; Hult, M.; Junghans, A.; Kasperovych, D. V.; Kropivyansky, B. N.; Lutter, G.; Marissens, G.; Polischuk, O. G.; Romaniuk, M. V.; Stroh, H.; Tessalina, S.; Tretyak, V. I.; Ware, B. (2022). "New limits on double-beta decay of 190Pt and 198Pt". The European Physical Journal C. 82 (1). arXiv:2201.06555. doi:10.1140/epjc/s10052-022-09989-1. ISSN 1434-6044.
  10. Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Di Marco, A.; Incicchitti, A.; Kropivyansky, B. N.; Laubenstein, M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I. (2019). "First direct search for 2ϵ and ϵβ+ of 144Sm and 2β- decay of 154Sm". The European Physical Journal A. 55 (11). arXiv:1910.02262. doi:10.1140/epja/i2019-12911-3. ISSN 1434-6001.
  11. 1 2 3 4 Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Tessalina, S.; Tretyak, V. I. (2020-08-05). "Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta". Physical Review C. 102 (2). arXiv:2009.01508. doi:10.1103/PhysRevC.102.024605. ISSN 2469-9985.
  12. Belli, P; Bernabei, R; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Incicchitti, A; Kobychev, V V; Poda, D V; Tretyak, V I (2011-11-01). "Final results of an experiment to search for 2β processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators". Journal of Physics G: Nuclear and Particle Physics. 38 (11): 115107. arXiv:1110.3923. doi:10.1088/0954-3899/38/11/115107. ISSN 0954-3899.
  13. Lehnert, B; Wester, T; Degering, D; Sommer, D; Wagner, L; Zuber, K (2016-08-01). "Double electron capture searches in 74Se". Journal of Physics G: Nuclear and Particle Physics. 43 (8): 085201. arXiv:1605.05976. doi:10.1088/0954-3899/43/8/085201. ISSN 0954-3899.
  14. 1 2 3 4 5 Broerman, B.; Laubenstein, M.; Nagorny, S.; Song, N.; Vincent, A.C. (2021). "A search for rare and induced nuclear decays in hafnium". Nuclear Physics A. 1012: 122212. arXiv:2012.08339. doi:10.1016/j.nuclphysa.2021.122212.
  15. 1 2 Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kropivyansky, B.N.; Laubenstein, M.; Poda, D.V.; Polischuk, O.G.; Tretyak, V.I. (2014). "Search for double beta decay of 136Ce and 138Ce with HPGe gamma detector". Nuclear Physics A. 930: 195–208. arXiv:1409.2734. doi:10.1016/j.nuclphysa.2014.08.072.
  16. Belli, P.; Bernabei, R.; Dai, C.J.; Grianti, F.; He, H.L.; Ignesti, G.; Incicchitti, A.; Kuang, H.H.; Ma, J.M.; Montecchia, F.; Ponkratenko, O.A.; Prosperi, D.; Tretyak, V.I.; Zdesenko, Yu.G. (1999). "New limits on spin-dependent coupled WIMPs and on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators". Nuclear Physics B. 563 (1–2): 97–106. doi:10.1016/S0550-3213(99)00618-5.
  17. 1 2 3 4 Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; dʼAngelo, S.; Di Vacri, M.L.; Incicchitti, A.; Laubenstein, M.; Nagorny, S.S.; Nisi, S.; Tolmachev, A.V.; Tretyak, V.I.; Yavetskiy, R.P. (2011). "First search for double β decay of dysprosium". Nuclear Physics A. 859 (1): 126–139. arXiv:1103.5359. doi:10.1016/j.nuclphysa.2011.04.003.
  18. A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of 123Te". Physical Review C. 67 (1): 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID 119523039.
  19. Caracciolo, V.; Nagorny, S.; Belli, P.; et al. (2020). "Search for α decay of naturally occurring Hf-nuclides using a Cs2HfCl6 scintillator". Nuclear Physics A. 1002 (121941): 121941. arXiv:2005.01373. Bibcode:2020NuPhA100221941C. doi:10.1016/j.nuclphysa.2020.121941. S2CID 218487451.
  20. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. doi:10.1146/annurev-nucl-010722-074615. Retrieved 23 November 2023.
  21. Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P. (2015). "Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis". Nature Communications. 6: 5956. arXiv:1509.08054. Bibcode:2015NatCo...6.5956W. doi:10.1038/ncomms6956. ISSN 2041-1723. PMC 4309418. PMID 25601158.
  22. Cosmogenic Iron-60 In Iron Meteorites: Measurements By Low-Level Counting.
  23. Interstellar 60Fe detected on Earth - but where is the r-process nuclide 244Pu?
  24. Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. Springer Science and Business Media LLC. 12 (1). doi:10.1038/s41598-022-12684-6. ISSN 2045-2322.
  25. Boutin, Chad (9 September 2014). "Polonium's Most Stable Isotope Gets Revised Half-Life Measurement". nist.gov. NIST Tech Beat. Retrieved 9 September 2014.
  26. Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. Elsevier BV. 194: 110708. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043.
  27. 1 2 "SHE Factory first experiment – FLEROV LABORATORY of NUCLEAR REACTIONS".
  28. Jagdish K. Tuli, Nuclear Wallet Cards, 7th edition, April 2005, Brookhaven National Laboratory, US National Nuclear Data Center
  29. Interactive chart of nuclides (Brookhaven National Laboratory)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.