Main building of Beloyarsk Nuclear Power Station as seen from the Beloyarskoye Reservoir near Zarechny, Sverdlovsk Oblast, Russia. Beloyarsk has the largest fast breeder reactor, the (BN-600), at 600 MW it is the second-most powerful breeder in the world. Construction of a second breeder reactor, the BN-800 reactor, was completed in 2016.
A cutaway model of the reactor. The core, that is the nuclear fuel at the heart of the reactor has dimensions of 2 meters in height by 0.75 meters in diameter, similar to the BN-800 reactor.[1]

The BN-600 reactor is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. It has a 600 MWe gross capacity and a 560 MWe net capacity, dispatched o the Middle Urals power grid. It has been in operation since 1980 and represents an evolution on the preceding BN-350 reactor. In 2014, its larger sister reactor, the BN-800 reactor began operation.

The plant is a pool type LMFBR, where the reactor, coolant pumps, intermediate heat exchangers and associated piping are all located in a common liquid sodium pool. The reactor system is housed in a concrete rectilinear building, and provided with filtration and gas containment features.

In the first 24 years of operations, there have been 12 water-into-sodium leaks[2] in the steam generators, routinely addressed isolating the faulty module with gate valves.[3] These incidents did not have off site impact, did not interest radioactive material (sodium in secondary circuit is not neutron activated) and was not reported to IAEA having no impact on safety.

As of 2022, the cumulative "energy Availability factor" recorded by the IAEA was 76.3%.[4]

The reactor core is 1.03 metres (3 ft 5 in) tall with a diameter of 2.05 metres (6 ft 9 in).[5] It has 369 fuel assemblies, mounted vertically, each consisting of 127 fuel rods enriched to between 1726% 235U. In comparison, normal enrichment in other Russian reactors is between 34% 235U. The control and scram system comprises 27 reactivity control elements including 19 shimming rods, two automatic control rods, and six automatic emergency shut-down rods. On-power refueling equipment allows for charging the core with fresh fuel assemblies, repositioning and turning the fuel assemblies within the reactor, and changing control and scram system elements remotely.

The unit employs a three-circuit coolant arrangement; sodium coolant circulates in both the primary and secondary circuits. Water and steam flow in the third circuit. The sodium is heated to a maximum of 550 °C (1,022 °F) in the reactor during normal operations. This heat is transferred from the reactor core via three independent circulation loops. Each comprises a primary sodium pump, two intermediate heat exchangers, a secondary sodium pump with an expansion tank located upstream, and an emergency pressure discharge tank. These feed a steam generator, which in turn supplies a condensing turbine that turns the generator.

There is much international interest in the fast-breeder reactor at Beloyarsk. Japan has its own prototype fast-breeder reactors. Japan paid 1 billion[6] for the technical documentation of the BN-600. The operation of the reactor is an international study in progress; Russia, France, Japan, and the United Kingdom currently participate.

The reactor has been licensed to operate up to 2025.[7]

See also

References

  1. "Fast Neutron Reactors - article from World-Nuclear".
  2. "IAEA International Conference on Fifty Years of Nuclear Power" (PDF).
  3. "IAEA BN-600 POWER UNIT 15-YEAR OPERATING EXPERIENCE" (PDF).
  4. "Beloyarsk-3". PRIS. IAEA. Retrieved 17 September 2020.
  5. Status of Fast Reactor Research and Technology Development (PDF). International Atomic Energy Agency. 2012. p. 130. ISBN 978-92-0-130610-4. Retrieved 11 November 2014.
  6. Bellona Foundation, an international environmental NGO based in Norway. "Factsheet on the Beloyarsk Nuclear Power Plant". Archived from the original on 2013-11-10.
  7. "Russian Fast Reactor Connected to the Grid". powermag.com. 1 February 2016. Retrieved 22 April 2018.

56°50′30″N 61°19′21″E / 56.8416°N 61.3224°E / 56.8416; 61.3224

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.